(18x^4-2x^3-7x+8)-(9x^4-6x^3-5x+7)=

Simple and best practice solution for (18x^4-2x^3-7x+8)-(9x^4-6x^3-5x+7)= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (18x^4-2x^3-7x+8)-(9x^4-6x^3-5x+7)= equation:


Simplifying
(18x4 + -2x3 + -7x + 8) + -1(9x4 + -6x3 + -5x + 7) = 0

Reorder the terms:
(8 + -7x + -2x3 + 18x4) + -1(9x4 + -6x3 + -5x + 7) = 0

Remove parenthesis around (8 + -7x + -2x3 + 18x4)
8 + -7x + -2x3 + 18x4 + -1(9x4 + -6x3 + -5x + 7) = 0

Reorder the terms:
8 + -7x + -2x3 + 18x4 + -1(7 + -5x + -6x3 + 9x4) = 0
8 + -7x + -2x3 + 18x4 + (7 * -1 + -5x * -1 + -6x3 * -1 + 9x4 * -1) = 0
8 + -7x + -2x3 + 18x4 + (-7 + 5x + 6x3 + -9x4) = 0

Reorder the terms:
8 + -7 + -7x + 5x + -2x3 + 6x3 + 18x4 + -9x4 = 0

Combine like terms: 8 + -7 = 1
1 + -7x + 5x + -2x3 + 6x3 + 18x4 + -9x4 = 0

Combine like terms: -7x + 5x = -2x
1 + -2x + -2x3 + 6x3 + 18x4 + -9x4 = 0

Combine like terms: -2x3 + 6x3 = 4x3
1 + -2x + 4x3 + 18x4 + -9x4 = 0

Combine like terms: 18x4 + -9x4 = 9x4
1 + -2x + 4x3 + 9x4 = 0

Solving
1 + -2x + 4x3 + 9x4 = 0

Solving for variable 'x'.

The solution to this equation could not be determined.

See similar equations:

| -10x+6=-7+9 | | 2x+[-5-x]=20 | | 35x+3=8 | | 2(x-1)+5=3(x-1)-7 | | x-(2-4x)=3 | | -x^2-10x-23=0 | | g(x)=2f(x+2)+4 | | (7x+4)+(7x+4)-4+2(7x+4)=180 | | y=43-4c | | -16=3(-x+9)+2 | | f(g(x))x=3 | | 3-x-y=7x-8+2y | | 2(x-3)-5(3x-1)=6x-8 | | x*dx+y*dy=0 | | 2(x+5)+x=2(x-3)+7(x-2) | | 8x+50=50 | | log(5)+log(x+3)=log(4x+20) | | 2(12*x)= | | 5x+2+x+50= | | t-5b=8 | | 11.5-7.2y=-48.6 | | 2(13*x)= | | -x-1=x | | 19x-4+5=Y | | -x^4=81 | | 3x+9=7x-15+4 | | x-3(3-x)+5(2x-1)=7(x-1)+7 | | yz=16 | | 2/18/2= | | 34=8x+2 | | 5x+x=7560 | | X+(x-4)=10 |

Equations solver categories